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A bstract

T he potential for faults in distributed com puting sys—
tem s is a signic ant com plicating factor for applica-
tion develbpers. W hik a variety of techniques exist for
detecting and oorrecting fauls, the im plm entation of
these technigues in a particular context can be di-
culk. Hence, we propose a fault detection service de-
signed to be incorporated, n a m odular fashion, into
distributed com puting system s, tools, or applications.
T his service uses welkknown technigques basaed on un-
reliabke fault detectors to detect and report com ponent
failure, whilk allow ing the user to tradeo  tim eliness of
reporting against false positive rates. W e describe the
architecture of this service, report on experim ental re-
sults that quantify its cost and accuracy, and describe
its use In two applications, m onitoring the status of
system com ponents of the GUSTO com putational grid
testbed and as part of the N etSolve netw ork-enablkd nu-
m erical soler.

1 Introduction

A maprdirence between distrbuted and sequen-
tial com puting, as they are usually practiced, is that
n a distrbuted com putation, individual com ponents
m ay fail w ithout the entire com putation being tem i-
nated. Indeed, com ponentsm ay failw ithout the restof
the com putation being aw are that failure has occurred.
T hese phenom ena represent both an opportunity and
a challenge. The opportunity is that a com putation
can, in principle, contihue to operate despite failire
of indwidual com ponents. T he challenge is that new
techniques are required for detecting and responding to

com ponent failures. M any years of research on these
topics have yielded a considerabl body of theoretical
and practical know ledge of fault detection, handling,
and recovery technigues.

In our work, we approach these issues from the per-
spective of the user of whhat are term ed com putational
grids [9], that is, netw orks of com puting resources, of-
ten high-perform ance com puters, ntended to be used
In an integrated fashion for such problm s as collab-
oratwe engineering, com putational steering, and dis-
trbuted supercom puting. Grid programm ers often
want to adapt existing com putational m odels, tools,
or applications for distribbuted execution. T hey require
services that sin plify this task by encapsulating com -
pXx aspects ofdistributed com puting environm ents. In
previous work, we have developed and dem onstrated
the utility of services for resource location, resource
allocation, inform ation, com m unication, security, and
data access, collectively term ed the G lobus tookit [8].
T hese services use sin ple localm echanisn s to support
a variety of global policies. For exam pk, the G Iobus
resource m anagem ent service deplys just a sin pke Io-
calm anager at each m anaged resource, but supports
a variety of m anagem ent policies via resource brokers
and co-allbcators [6].

In this paper, we propose a low-kvel service to
support fault handling strategies In grid applications.
T hese applicationsm ay want to respond to com ponent
failure ;n a variety ofways. For exam ple, they m ay

term nate the entire application (ie., faikstop);
ignore the failire and continue execution;

allocate a new resource and restart the failed ap-
plication com ponent [13, 4]; or



use replication and reliable group com m unication
prin itives to continue execution [1, 15].

Each of these behaviors has costs and benets asso-
ciated with it and the appropriate behavior will be
application-dependent.

To date, grid applications have either ignored fail-
ure issues or have in plem ented failire detection and
response behavior com pletely within the application.
T his approach places an undue burden on the appli-
cation developer and com plicates the design and de-
velopm ent of grid applications. The sitmation could
be in proved considerably if the underlying grid infras-
tructure provided basic services that support the in -
plm entation of application specic failure behaviors,
such as those described above.

In this paper, we consider the nature of these grid
services and propose a specic  service based on fault
detectors, which detect when a system com ponent has
fajled and notify the application of that fact. Fac-
tors such as the highly variable com m unication latency
and besteort service provided by today’s w ide area
networks, and the need to construct a scalable ser—
vice in pact the design of the fault-detector. These
pragm atic issues dictate that we consider an unreli-
abk faultdetection service which m ay som etin es re-
port a resource to have failed, only to retract that re-
port at a later tine. W e have designed and inpl-
mented such a service and have dem onstrated that a
range of application-specic fault behaviors can be in -
plm ented on top of this service.

In Section 2, we discuss the nature of faults, review
som e basic results n distrbuted system s, and show
why fault detection is an appropriate basic service to
provide in the grid. In Section 3, we dene a system
modelwhich weuse to dene an fault detection archi-
tecture. In Section 4,we present a design for a specic
in plm entation of a fault detection service and dis-
cuss how this service has been used to construct fault-
tolerant grid applications (Section 6). Tn Section 5,we
provide results that quantify the accuracy of our fault
detector In a realistic w ide-area environm ent. W e then
com pare our approach with other approaches to con-
structing fauttolerant grid applications and conclude
w ith a discussion of future work.

In sum m ary, the contributions of the work described
in this paper are:

W e propose the unreliable fault detector as a ba-
sic grid service and propose a specic  fault de-
tection architecture and in plem entation for w de-
area com putational environm ents.

U sing experin entaldata, we dem onstrate that our

approach to faul detection can be in plem ented
ecien tly and accurately.

W e dem onstrate that the proposed service can be
used to in plem ent usefill behaviors in distributed
com puting system s and applications.

2 Faults and D istributed System s

C om ponents of a distributed system can fail in dif-
ferent ways [18]. In the sin plest case of crash failure,
a ocom ponent sin ply ceases to function, for exam ple
due to an operating system crash or the severing of a
network connection. A special case of crash failure is
failstop failire, n which a crash results in the com po-
nent transitioning pem anently to a state that allows
other com ponents to detect that it has failed (eg., by
ceasing to send periodic \iam -alive" m essages). M ore
com plkx failuire m odes are also possibl, or exam ple
when a com ponent fails by not functioning \correctly,"
such aswhen am an ory chip retums an incorrectvalie,
a packet is cormupted during transit over the network,
or (in the extrem e, so-called Byzantine case) because
a com ponent operates in a m alicious fashion, perhaps
causing a general failure or obscuring the real source of
the failure.

In this paper, we focus on the problm of detect-
ing failstop crash failires. W hile in som e situations,
system com ponents can detect and correct even B yzan—
tine failures through the use ofm echanism s such as re-
dundancy and retransm ission, this isdicult and m ay
require detailed know ledge about the com ponents in
question. Furthem ore, m any such failire m odes are
m asked at the com ponent level.

W e are Interested In the question ofwhat basic ser—
vices should be provided as part of a distributed com -
putational nfrastructure to support fault recovery. To
gain nsight nto this problem , it is nteresting to con-
siderw hat is the Jeast am ount of inform ation needed to
in plem ent som e basic reliable distrdbbuted algorithm s,
such as Consensus. In the Consensus algorithm , all
functioning processes m ust propose and unanin ously
agree on a valie, in spite of the fact that any of the
participating processesm ay failduring the execution of
the algorithm . C onsensus has interesting practicaluses
as it can be used to in plm ent essential fault4olkrant
functions such as lader election and voting.

A fiindam ental result from distributed systems is
that Consensus can not be impkmented In a dis-
tributed system sub Ect to crash failures if the system
is asynchronous, ie., if no tin ing assum ptions can be
m ade, such as the am ount of tim e it takes for two pro-
cesses to com m unicate or the am ount of tin e it takes



for an operation to com plkte [7]. N ote that this asyn-
chronous distribbuted system m odel corresponds well
w ith the besteort service provided over current w ide
area netw orks.

O ne solution to this problam is to augm ent the dis-
trbuted system with additional inform ation, such as
know ledge aboutw hich system com ponentshave failed.
G iven this Inform ation, it ispossible to in plem ent C on-
sensus In the presence of crash failure. Less form alfail-
ure behaviors, such as restart, can also bedened with
respect to failure detection. Failure detection provides
a sound foundation on which to build a range of failure
behaviors and as such, we conclude that it should be
provided as a basic service In distrlbuted com puting
environm ents.

Tt is Interesting to consider what are the weakest
properties that a failire detector can have and still
be usefil. In [5), it is shown that Consensus In asyn-
chronous distributed system s can be solved with an
unreliabke failire detector: a failure detector that can
erroneously indicate that a com ponent has failed only
to correct this error at a Jater tin e. Furthem ore, an
unreliable failure detector can be distributed , w ith each
com ponent of the system having access to its own de-
tector and each detector potentially producing a dier-
ent acoount of which system com ponents have failed.
T his result holds as Iong as the failure detector m eets
som em Inin alrequirem ents for com pleteness and accu-
racy. In particular:

all failed com ponents are eventually discovered
and pem anently dentied as such, and

at Jeast one fiinctioning com ponent is known to be
functioning by all functioning com ponents in the
system after som e point in timn e.

From the perspective of producing a practical ser—
vice, unreliable failure detectors have several advan-
tages over reliable detectors. B ecause each com ponent
can have access to its own failure detector, and detec—
tors do not have to agree about what com ponents of
the system have failed, the service does not have to be
centralized, nor do we need to provide a globally con-
sistent state across detectors. Furthem ore, unreliable
com m unication protocols can be used to in plem ent an
unreliable failure detector. These protocols have the
advantage of Iow er overheads, lIow er Jatency and better
scalablity. For these reasons, an unreliabl failire de-
tectorw illbem ore scalable, sin pler,and m oreecien t
to in plem ent then a reliablk detector.

An unreliable failire detection service is not w ith-
out lin itations. Provably correct algorithm s guaran-
tee term ination by a com bination of iteration and the

fact that the failure detector w ill eventually identify all
fajled com ponents and at least one fiinctioning com -
ponent. In real system s, this unbounded wait is unac-
ceptablk as it can be the case that the cost of waiting
for an absolutely correct determ ination m ay exceed the
cost that would be incurred ifwe sin ply assum ed that
the failure detector was correct and took action based
on this assum ption.

U tim ately, the decision as to when the inform ation
provided by a failure detector is to believed m ust be
the responsibility of an application; the failure detec-
tor cannot interpret its results. An application m ust
use the nform ation provided by the failure detector
to m ake a decision based on the probability of a fail-
ure report being in error, the application-specic  cost
of perform ing som e action if the report was false, and
the application-specic  cost of not perform ing that ac-
tion if the reportwas in fact true. C learly, nform ation
about the reliability of the failure collector is necessary.
In Section 5, we show that the probability of an erro-
neous report is generally Iow , and decreases the onger
that one waits.

In sum m ary, we propose that a distributed com put-
ing environm ent should provide unreliable failire de-
tection as a basic service, providing notication when
system com ponentsm ight have failed and leaving it to
the application to interpret this inform ation based on a
characterization of the fault service, fuiture inform ation
provided by the service and application requirem ents.

3 Design of a Fault D etection Service

W e now consider issues that arise in designing the
proposed fault detection service. W e discuss the en-
tities for which we wish to detect failure, the design
goals for our faul detection service, and the overall
architecture of this service.

3.1 System Model

Werst dene amodelfor the system being moni-
tored by the fault detector. This m odel denties the
visble com ponents of the system and hence determ ines
w hat types of entities the fault detector needs to m on-
ior. In principle, system com ponents could be entire
sites, specic  ocom puters, processorsw ithin a com puter,
processes, threads, netw ork Interfaces, netw ork connec-
tions, or any num ber of other low -level system abstrac-
tions. For reasons of com plexity, utility and overhead,
we have chosen to m odel the system as consisting of
processes and com puters.

O ur ultin ate goal in constructing the fault detec-
tor is to enable the construction of robust applications,



not to diagnose the causes of system or application fail-
ure. Considering a com puter as a single unit prohibits
the detection of som e types of failure, such as a spe-
cic disk going o-lne. However, it is often the case
that failures of a com ponent ofa com puter are detected
by underlying system m echanisn s and cause the entire
com puter to fail. A sin ilar argum ent can be m ade for
not considering low -evel softw are abstractions such as
threads. In both cases, w e considered the costofhaving
the fault detector dealw ith such low —-levelabstractions
as outw eighing any potential benets.

N ote thatwe do not inclide netw orks as com ponents
to be m onitored. D etection of network failure tends to
be dicult because it is hard to discrin nate between
host failure and network failire w ithout the existence
of a second, ndependent path . Furthemm ore, the den-
tication of such paths when they exist requires both
detailed know ledge of network topology and coordina-
tion am ong distributed m onitors. For reasons of sin -
plicity and generality, we lin it m onitoring to processes
and hosts. Note that m onitoring processes and hosts
does serve to m onitor indirectly the network connec-
tions between these m onitored ob fcts.

3.2 Design Goals

G ven this system m odel, we consider the require-
m entswhich the fault detectorm ust satisfy. Them ain
concems that should be addressed in the design of a
fault detector for grid environm ents are:

Scalability . T hedesign ofthe fault detectorm ust
be capabl of scaling to large num bers of processes
and com puters.

A ccuracy and com pleteness. T he fault detec—
torm ust dentify faults accurately, w ith both false
positives and false negatives being rare.

T in eliness. Problems must be dentied 1 a
tin ely fashion, so that responses and corrective
actions can be taken as soon as possible.

Low overhead. M onitoring should not have a
signican t in pact on the perform ance of applica-
tion processes, com puters, or netw orks.

Flexibility. W e want to support a range of
application-specic  fault detection policies and us-
age m odels. For exam pk, applications m ay w ish
to control which entities are m onitored, how of-
ten they arem onitored, the criteria used to report
failure, and where failures are reported.
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Figure 1. Architecture of a fault detector for
monitoring computers and processes

3.3 A Fault Detection Service Architecture

A s illustrated In F igure 1, our fault detection service
architecture isdened in term softwo types ofentities:

1. A Ical monitor is responsible for observing the
state of both the com puter on which it is Jocated
and any m onitored processes on that com puter. It
generates periodic \iam -alive" m essages or heart—
beats, sum m arizing this status inform ation.

2. A data oolkctor receives heartbeatm essages gener—
ated by ocalm onitorsand actually denties failed
com ponents based on m issing heartbeats.

Aswe shall see in the next section, this separation
of Jocalm onitor and data collector fiinctions provides
considerabk exibilit y n how we handke fauls.

Scalability and perform ance concems require that
the heartbeats com m unicated by the localm onitors be
transn itted via a connectionlkss, typically unreliable
protocol. Hence, the data collector m ust take into ac-
count network delays and possble packet loss when
Interpreting a Jack of heartbeat from a particular Iocal
monitor. W e discuss these issues below .

4 A Fault D etection Service

W e now discuss the in plem entation of a specic
fault detector service, nam ely the G lobus H eartbeat
M onitor (HBM ), which provides a fault detection ser—
vice for applications developed w ith the G obus tooXkit.
HBM oom prises three com ponents:



A Iocal m onitor, responsible for m onitoring the
com puteron which it runs, aswellas selected pro-
cesses on that com puter.

A client registration API, which an application
uses to specify the processes to be m onitored by
the Jocal m onitor, and to whom heartbeats are
sent.

A data collector API, which enables an applica-
tion to be notied about relevant events concem-
ing m onitored processes.

In brief, an application that w ishes to use the HBM
service needs to do just two things:

1. R egisterthe processes forw hich failire detection is
required, either by calling the registration AP Idi
rectly, orby having the registration fiinction called
extemally on behalf of the application.

2. Use the data collector API to construct a data
collector that in plem ents the desired application-
specic  fault behavior, whether this is global ter—
m ination, rescheduling of a failed com ponent, fiir-
ther testing to verify that failire has occurred, etc.

W e describe these aspects of the HBM service In tum.
4.1 Client Registration API

G Iobusbased grid system s m aintains a HBM local
m onitor for each G Iobusm anaged resource. H ence, the
G Iobus user need not be concemed w ith creating or
m aintaining these processes. T he Iocalm onitor is typ-
ically run on the resource itself, to sin plify the task of
m onitoring the status of the resource and of processes
running on the resource. O n workstations and shared
m em ory com puters, such as the C onvex E xem plar, the
JIocalm onitor runs directly on them achine in question.
On distrbuted m em ory com puters such as the Cray
T 3E , the Jocalm onitor runs on a tightly coupled front
end or service node.

A processm ustbe explicitly registered w ith the Jocal
m onitor for its status to be reported. A client registra-
tion APT is provided for this purpose. ThisAPImay
be called either from within the application program
or extemally by a separate process. T he registration
process provides the Iocalm onitor w ith the dentity of
the process to be m onitored, the dentity of the data
collector(s) to which process heartbeats are to be sent,
and a heartbeat nterval. On temm nation, processes
use an unregister fiunction provided by the client API
to disconnect from the localm onitor, preventing them
from being reported as failed.

The ocalm onitor can use a range of m ethods to
determ Ine the status of registered processes. W e cur—
rently use the standard UNIX ps comm and to report
on moniored processes. The /etc/proc m echanisn
found on m any UN IX platform s could also be used.

T he Jocalm onitor reports the status of each m oni-
tored process to the appropriate data collectors at the
tin e of process registration and unregistration, and at
xed specied intervals n between. A separate mes-
sage of size 70-90 bytes is sent for each m onitored pro-
cess. This m essage nclides data dentifying the m on-
iored process and its current status. In addition to
process heartbeats, the Jocalm onitor also generates a
heartbeat for itself, allow ing an application to detect
a resource failure even if there are no m oniored pro-
cesses running on that resource.

H eartbeat data is sent to the data collectors using
an unreliabl datagram service: specically ,the UDP
protocol. W e chose this protocolover the reliable TC P
protocol for several reasons. F irst, TCP is connection-
oriented and consum es resources on both the sender
and receiver. The overhead associated with UDP is
Jess, m aking this solution m ore scalable than if TCP
had been used. Second, the fact that TCP is a reli-
able protoocoltends to introduce additional latency into
com m unication operations. G iven that heartbeats are
tin e sensitive, introduction ofadditional latency in the
delwery of heartbeat data is ill advised. F inally, when
availabl, we wanted to have the option to use multi-
cast to send data from a localm onitor to an arbitrary
and dynam ic set of data collectors, and TCP cannot
be used In conjinction w ith m ulticast.

4.2 The Data Collection API

The HBM data collection APT allow s for the con-
struction of application-specic data collectors. The
API is calback-based, allow ing an application to reg-
ister a finction to be called when an event of inter—
est occurs. W hen m aking a call to the data collection
API, an application provides a calback fiinction along
w ith an eventm ask to indicate the events the calback
should be called on, such as a late heartbeat or a heart-
beat recewed.

The API in plem entation keeps track of all regis-
tered processes and records whenever a heartbeat ar-
rives. Since the data collector knows the frequency
at which heartbeats are being generated by registered
processes, it can infer m issing heartbeats. The API
can generate callbacks for m issing heartbeats for indi-
vidual processes, or for the host itself. Calbacks can
also be issued when other events of iInterest occur, such
aswhen a new process is registered, or when a process



unregisters or is reported as having failed.

Note that the function of the data collection API
is Iim ited to keeping track of heartbeats and invoking
calbacks into the application. An application-specic
data collector m ust provide a set of calbback fiinctions
that in plem ent the desired responses in response to
the HBM calbacks. Agai, it is the responsibility of
the application to m ake the determ ination as to com -
ponent failire based on how late the heartbeat is, the
requirem ents of the application, and the type of fault
recovery being in plem ented.

W enote that the structure of thedata collection AP T
oers usagreatdealofexibilit ynotonly in how adata
collector is in plem ented, but where it is in plem ented
as well. Data oollection fiinctions can be integrated
into the basic algorithm sofan application, provided by
specialized m odules started as part of the application,
or by separate, stand-alone program s. This exbilit y
further prom otes the use of the HBM to inplement a
w ide range of fault behaviors.

5 Experim entalR esults

W e are concemed w ith two aspects of HBM perfor—
m ance: rst, the costs associated w ith m onitoring (at
hosts, netw ork, and data collectors), particularly as the
num ber ofm onitored hosts increases; and the accuracy
of the HBM reports: that is, how quickly a failure is
reported, and how frequently such reports tum out to
be ncorrect. W e discuss these two issues in this section
and report on experin ental results that provide som e
Insights into these questions.

A s discussed above, HBM m onitors send heartbeat
m essages to data collector(s) at regular ntervals. In
addition to recording and handling failires reported
by the lbcalm onitors, the HBM data collector must
diagnose potential com ponent failire when no heart-
beat m essage has been received from that com ponent
fora specied am ountoftin e. Thedata collector isnot
guaranteed to recewe all such m essages, as heartbeats
m ay be lost or delayed for a variety of reasons, includ-
Ing network congestion, scheduling delays at the Iocal
m onior or data collector, and network failure. H ence,
there is alvays the possbility that the data collector
m ay diagnose a com ponent as having failed when ithas
not. For this reason, any discussion of HBM accuracy
nvolves a tradeo between the am ount of tine we are
prepared to wait before concluding that a com ponent
has failed, and the num ber of false reports that we are
prepared to dealw ith.

Our goal is to m inin ize som e fiinction of report-
ing delay, false positive rates, and system overheads.
T he param eters that we can control are system costs
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Figure 2. The nine hosts used in the HBM ex-
periments, showing their connectivity, which
included local area networks, a metropolitan
area network (Los Nettos, a 100 Mb/s network
in southern California), and the Internet.

(by which we m ean prim arily heartbeat frequency, al-
though the priority gwven to HBM processes and to
HBM network trac can also be cost issues) and de-
nition offailire. N ote that these variablescan be varied
on a per-com ponent basis.

P revious research [2, 16, 3, 17] provides som e rele-
vant data. For exam pl, n a 1992 study in which 32
byte packets were sent over a 128 K b/s transA tlantic
Iink at regular intervals for extended periods, B oot ob-
serves high loss rates (9% ) but notes that losses are es-
sentially independent as long as probe trac  acocounts
for less than 10% of available bandw dth. Tn a 1997
study, Borella et al. [3] analyzed trac between three
pairs of sites located variously within a m etropolitan
area and on a w dde area network. T hey sent an 80 byte
packet every 30 m sec and observed packet loss rates of
036% , 0.61% and 3.54% for the three pairs. Losses
were seen to be bursty, but the m ean loss burst size
of 69 (around 200 m sec) suggests that loss rates for
packets sent at 10 sec Intervals would be essentially
independent. Sin ulation studies show sin ilar results.

In order to obtain m ore detailed data on loss rates
we conducted our own studies. W e studied HBM per-
form ance on an experin ental system com prising the
nine hosts shown in Figure 2. A Jocalm onitor at each
host sent heartbeats to data collectors at every host (in-
cliding itself) at 10 second intervals for several days,
during which tin e a total of 3,835,905 m essages were
sent, of which 93.6% were received. The (modied)
data collectors Iogged tin estam ped heartbeats for sub-
sequent analysis.

W e use the heartbeats received at each host to com -
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pute Interarrwal tin es. The results are sum m arized
n ur gures. Figures 3 and 4 present results from
the point of view of a singke host, bolas at IST; Fig-
ures 5 and 6 provide results for all heartbeats received,
sum m ed across all hosts.

F igures 3 and 5 express results as a histogram , show -
Ing the frequency w ith which various interarrivaltin es
are observed . B ecause heartbeat packets are generated
every 10 seconds, and m essages losses are Independent,
we expect a large peak at 10 seconds (corresponding to
packets that arrive w ith no intervening lost packet); a
second step at an interarrival tin e of 20 seconds cor-
responding to one lost packet; and so on. T his ism ore
or kss what we see, although because packets can be
delayed both in the network (to a sm allextent: typical
router queue delays are sm all) and by scheduling delays
at the generating and receiving processors (especially if
the processor is heavily Joaded), the graph is not quite
so regular.

Figures 4 and 6 express results in term s of the num -
ber of observed interarrival tin es greater than the tin e
on theX axis. (N otice that these graphshence plt the
false positive rate that we can expect ifwe accept that
X -axis value as our denition of \failire.") Figure 4
distinguishes the heartbeats received at bolas accord-
Ing to the origihating host. N otice the w ide variation
In Joss rates and In the extent to which network and
scheduling delays skew the interarrival tin es. Skew -
ing is particularly noticeable for data from the C onvex
Exem plar at Caltech (\CIT neptune"). Exam ination
of the Interarriwal tin es observed by the local data
collector showed that this skew was due to delay In
scheduling the Jocalm onitor, caused by high Ioads on
the processor running the localm anager.

Our results conm  the general trends observed in
previous studies. The vast m aprity of interarrival
tin es correspond to a packet that arrives w ith no in—
tervening lost packet. Ifwe dene \failure" as corre-
sponding to no heartbeat seen for 240 seconds, then the
false positive rate is less than 1 in a 100,000. Further—
more, it appears that som e of these \false positives"
are due not to an unfortunate series of dropped pack-
ets, but to tam porary losses in network connectivity
that lasted several m lnutes: that is, events that we
m ght wellwant to see signalled as \failures." M ore
rapid failure detection is possible, w ith som e increase
n false positive rates: for exam pl, at 35 seconds, the
false positive rate is 1 in a few hundred. M ore firequent
heartbeats would be required to reduce false positive
rates at Iow interarrival tin es.

W e also m easured overheads associated w ith m oni-
toring. The bcalm onitorsat thedieren thostsshowed
CPU utilization averaging under 13% ,w ith m inim um

— HeartbeatMonitor | -]
File Options

NexLrefresh i 2 seconus,

Figure 7. An interactive display tool for
GUSTO fault data

and maxinum of 0.05% and 15% , respectively. M ost
of this utilization was due to children of the Jocalm oni-
tors, which executed the system ps program to get the
client status. The data collectors showed even lower
utilization, averaging under 0.14% ,w ith m ininum and
maxinum of 0.06% and 0.29% , respectively.

6.HBM A pplications

The HBM service has been used to monitor the
health and status of critical com ponents n GUSTO ,
a grd testbed that currently spans over 20 institu-
tions [8]); and to detect server failure in a distrbbuted
com puting system called N etSolve [4].

HBM isused In GUSTO by system adm inistrators
to dentify problm s in the testbed and to determ ine
which testbed sites are finctional. W e are currently
using a singlke data collector which can report its data
through a web interface (eg., see Figure 7) or via an
em ail notication system . This application revealed
that determ ining the status of arbitrary processes can
be expensive on som e large parallel com puters. For ex—
am ple, a ps com m and w ithout argum ents on a loaded
512-processor Cray T 3E can take 17 seconds of real
tin e. This tin e can be decreased signican tly by pro-
viding ps with the list of processes w hose status is of
Interest, a change that has been m ade in the current
version of HBM .

HBM is used within NetSolwe to construct a
application-specic  restart-based fault recovery m echa-
nism . NetSolve is a lbrary that provides rem ote access
to m atheam atical solvers and lbraries such as Scal.A -
PACK .C lient calls to a NetSolve-enabled lbrary are



forwarded to a NetSolve agent, which transparently
dispatches the call to the m ost capabl server that has
the lbrary installed. If either the server fails or the
server or netw ork becom es too slow , the N etSolve agent
redispatches the request to another server.

NetSole mitially relied on the underlying network
transport layer to notify it ofbroken connections. H ow —
ever, in m any sitnations, this resulted In the N etSolve
agent hanging. This behavior has been elin inated by
m odifying N etSolve to use HBM to detect server fail-
ure.

Only NetSolve servers register with HBM , while
N etSole agents act as data collectors, m onitoring the
status of the servers to which they have dispatched re-
quests. C lients are not monitored at all. Currently,
N etSolve shifts a com putation over to a new server if
a single heartbeat is m issed. H owever, since the over—
head ofm oving a problem to a new server is known to
the agent, it would be possibk to wait for additional
m issed heartbeats if the cost of resubm itting the re-
quest is high.

7 Related W ork

Num erous distributed com puting system s incorpo-
rate fault detection and recovery m echanisn s. W e re-
view som e of this work here, contrasting it with the
approach described in this paper. O ur work is distin-
guished prim arily by its focus on providing a basic,
exible service that can be used to construct a range
of application-specic  fault behaviors.

D istributed system s, such as ISIS [1]and Horus [19]
provide high reliability via replication and ordered
group com m unication protocols. An ISISspecic fault
detection system , sin ilar to HBM , is used to deter-
m ine when a process or com puter laves a com puta-
tion. H ow ever, this service is not m ade available to the
application, nor is the application abl to choose how
faults are handled. O rdered group com m unication op-
erations enablk the construction of robust applications,
but the use of replication as the only m eans of provid-
Ing fault recovery m akes ISIS unsuitablke for som e grid
applications, especially extrem ely large com putations
requiring the use ofm ultiple supercom puting resources.

Network batch queuing systems operate n dis-
tributed, netw orked environm ents and often use check-
point and restart technigques to provide fault toler—
ance. Checkpointing is provided in system s such as
CODINE [11]and in high-throughput system s such as
Condor [13]. The fault behaviors for these system s are
lin ited to checkpoint/restartw ith no support form ore
robust design such as replication.

In the Legion wide-area com puting system [12], a
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hierarchy of \phoenix" dem ons is used to m onitor sys-
tam processes and restart them as needed. A pplica-
tion fault tolerance is provided using the M entatm acro

datao w model, in which objcts can be replicated,
w ith only one replica active and the rem aining dor-
mant. The rst dom ant replica is scheduled by the
Legion system only if it does not receive a reply to

a status query (ping) from the active replica w ithin

a prescribed num ber of seconds. W hile this approach

suces fortheM entat program m ingm odel, it assum es
that system com ponents function perfectly and that
com m unication links do not fail.

In PVM [10] and the PVM -based SNIPE sys-
tam [14], fault detection is perform ed by the PVM dae-
mon w hich is Jocated on each host, based on the receipt
of responses (or not) from the daem onson other hosts.
A pplication-level fault detection m ust be explicitly in-
cluded in the application program code.

W eissn an has com pared diren t fault tolerance
techniques for w ide-area m etacom puting [20]. In the
G allop system , each site runs a Scheduling M anager
that actively discovers the status of Iocalm achines by
\pinging" them . This monitoring finction has been
used to notify replication and checkpointing fault tol
erance m echanisn s, which were also com pared. This
approach detects som e host and network failures, but
does not detect the failure of hosts on which ping re-
sponses are generated independently by the network
card. Furthem ore, it does not detect either system or
application process failuires, and the scheduling m an—
agers are single points of failures for their sites.

8 Conclusions and Future W ork

W e have described the design and in plem entation
of a fault detection service for high-perform ance dis-
tributed com puting system s. By basing the service on
unreliabl fault detection and providing a clear separa-
tion between m onitoring, detection, and response, we
believe that we have succeeded In providing a exble
and ecien t oore service that supports a w ide range of
application requirem ents.

In ourwork to date, we have dem onstrated that this
service can be used by applications w ith m inin al per—
turbation to application structure. W e have also shown
that this service hasm inin alin pact on the oad of the
m achine in plm enting the service, typically less then
15% CPU utilization. Furthem ore, we have shown
that the use of an unreliabk faul detector does not
prohibit an application from m aking sensible decisions,
as the characteristics of the underlying transportm ech-
anisn ensure that the probability of error decreases
with time.



W hile the HBM does well detecting process fail
ure, discrin lnating between host and network failure
is fundam entally dicult for any rem ote m onitoring
approach. If absolitely no nform ation about a host
is obtamabk (eg., a heartbeat) then it is in possible
to decide whether it is due to host or network failire.
However, we do not regard this as a signican t prob-
J¥m for our applications, for which the know ledge that
a host is unavailabl¥ is m ore in portant than know ing
why.

W e areworking w ith various application groups and
tooldevelopers to investigate further the utility of this
fault detection service. W e expect to see a variety of
application-specic fault recovery m echanisn s in ple-
mented, mcluding the use of replication and voting
protocols. W e also hope to explore the use of m ore
rigorous fault tolerant behaviors such as reliable group
comm unication prin itives, and to investigate the re-
lationship between heartbeat frequency, system over-
heads, failure criteria, and false positive rates. W e are
particularly interested In understanding the utility of
adaptive techniques that m odify either heartbeat rates
or failure criteria in response to observed heartbeat loss
behavior and system overheads.
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